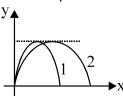
- 1. It was calculated that a shell when fired from a gun with a certain velocity and at an angle of elevation $5\pi/36$ rad would strike a given target. When the shell was fired it was found that a wall just prevented the projectile from completing its trajectory. At what angle of elevation should the gun be fired to hit the target?
 - a) $6\pi/36$ rad
- b) $11\pi/36 \text{ rad}$
- c) $7\pi/36 \text{ rad}$
- d) $13\pi/36$ rad
- 2. A cannon is aimed at an angle θ above the horizontal and a shell is fired with a muzzle velocity v_0 towards a vertical wall that is at a distance D from the cannon. The height from the bottom of the wall at which the shell strikes it is
 - a) $D \tan^2(\theta) \frac{gD^2}{v_o^2 \cos^2(\theta)}$

b) $D\tan(\theta) + \frac{gD^2}{2v_o^2\cos^2(\theta)}$

c) $D \tan(\theta) - \frac{gD^2}{2v_o^2 \cos^2(\theta)}$

- d) $D\tan(\theta) + \frac{gD^2}{2v_0^2\cos(\theta)}$
- 3. A particle is projected from a point P with a velocity v at an angle θ with horizontal. At a certain point Q it moves at right angle to its initial direction. Then velocity of particle at Q and time of flight from P to Q are
 - a) $v \cot(\theta)$ and $v \csc(\theta)/g$
- b) $v \cos(\theta)$ and $v \sec(\theta)/g$


c) $v \csc(\theta)$ and $v \sin(\theta)/g$

- d) zero and $v \csc(\theta)/g$
- 4. A body is projected with velocity u at an angle of projection θ with the horizontal. The body makes 30° w.r.t. the horizontal at t = 2 s. One second later it reaches the maximum height. Initial velocity and angle of projection are
 - a) $20\sqrt{3}$ ms⁻¹ and 45°

b) $30\sqrt{3}$ ms⁻¹ and 60°

c) $10\sqrt{3}~\text{ms}^{\text{--}1}$ and 30°

- d) $20\sqrt{3}$ ms⁻¹ and 60°
- 5. Trajectories of two projectiles are shown in figure. Let T_1 and T_2 be the time period and u_1 and u_2 their speeds of projection. Choose the correct options from the following

a) $T_1 = T_2 \& u_1 < u_2$

b) $T_1 > T_2 \& u_1 = u_2$

c) $T_1 > T_2 \& u_1 < u_2$

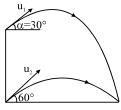
- d) $T_1 < T_2 \& u_1 > u_2$
- 6. A ball is thrown from ground level so as to just clear a wall 4 meters high at a distance of 4 m and falls at a distance of 14 m from the wall. Initial velocity of the ball and its angle of projection are respectively
 - a) $\sqrt{3}$ g/2 and 45°

b) $2g\sqrt{3}$ and 60°

c) $2g/\sqrt{3}$ and 15°

d) $g\sqrt{3}$ and 30°

7. A projectile is launched at an angle θ from a cliff of height H above the sea level. If it falls into the sea at a distance D from the base of the cliff then the maximum height attained by it, above the sea level, is


a)
$$H + \frac{D^2 \cot^2(\theta)}{\sqrt{2}(D+H \tan \theta)}$$

b)
$$H + \frac{D^2 \tan^2(\theta)}{\sqrt{3}(H+D\sin\theta)}$$

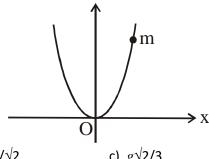
b)
$$D + \frac{H^2 \sin^2(\theta)}{4(H+D\tan\theta)}$$

d)
$$H + \frac{D^2 \tan^2(\theta)}{4(H+D\tan\theta)}$$

8. Particles are fired simultaneously from the top and bottom of a vertical tower with the elevation $\theta_1 = 30^\circ$, $\theta_2 = 60^\circ$ respectively and particles strike simultaneously at the same point when the reach the ground. If the distance where they hit the ground is $30\sqrt{3}$ m from the foot of the tower then (more than one options may be correct)

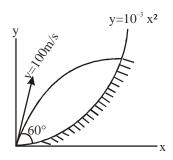
- a) Time of flight is $3\sqrt{2}$
- b) Height of the tower is 60 m
- c) u_1 is $10\sqrt{6}$
- d) u_2 is $10\sqrt{2}$
- 9. A ball is projected horizontally with a speed v from the top of a plane inclined at an angle 45° with the horizontal. How far from the point of projection with the ball strike the plane?

a)
$$\frac{v^2}{g}$$

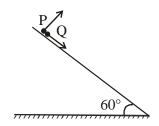

b)
$$\sqrt{2} \frac{v^2}{g}$$

c)
$$\frac{2v^2}{g}$$

$$d) \frac{2\sqrt{2}v^2}{g}$$


- 10. A particle projected with velocity u strikes an inclined plane normally at point P. If the angle of inclination of the plane w.r.t. the ground is β then (more than one options may be correct)
 - a) Height of the point P w.r.t. the ground is $\frac{2u^2}{g} \left(\frac{\sin^2 \beta}{1 + 3\sin^2 \beta} \right)$
 - b) Time of flight of the particle is $\frac{2u}{g\sqrt{1+3\sin^2\beta}}$
 - c) Time of descent is $\frac{u}{g\sqrt{1+3\sin^2\beta}}$
 - d) The maximum height reached by the particle w.r.t. the ground is $\frac{u^2}{g} \left(\frac{\sin^2 \beta}{1 + 3\sin^2 \beta} \right)$
- 11. A bead of mass m is located on a parabolic smooth fixed wire with its axis vertical and vertex at the origin as shown in figure. Shape of the wire is given by the relation $x^2 = 4Ay$. The bead is

released from rest at point y = 4A on the wire frame. Tangential acceleration of the bead when it reaches the position given by y = A is



- a) $g/\sqrt{2}$
- b) $3g/\sqrt{2}$
- c) $g\sqrt{2/3}$

- d) zero
- 12. An object is moving in the xy plane with the position as a function of time given by the relation $r = x(t)\hat{i} + y(t)\hat{j}$. If point O is at r = 0 then the distance of object from O is definitely decreasing when
 - a) $v_x > 0$ and $v_y > 0$
- b) $v_x < 0$ and $v_y < 0$ c) $xv_x + yv_y < 0$
- d) $xv_x + yv_y > 0$
- 13. Two stones are projected from origin (towards the same side of the origin) with the same speed of 20 ms⁻¹ One of the stones is projected an angle θ w.r.t the horizontal and the other at angle θ w.r.t. the vertical. Find the distance between the stones 1 second after projection. (Take $cos(\theta)$ as 4/5 and $sin(\theta)$ as 3/5).
- 14. A particle is projected up an inclined plane such that its component of velocity along the incline is 10 ms⁻¹. If its time of flight is 2 seconds and maximum height above the incline is 5 m then find the initial velocity of projection.
- 15. A ball is thrown upward with initial velocity of 15.0 ms⁻¹ at an angle of 30° w.r.t. the horizontal. If the point of projection is at the top of an inclined plane which slopes downward at an angle of 20° then the time after which the ball strikes the slope is
- 16. A projectile is fired at an angle of 60° with muzzle velocity 100 ms⁻¹ towards the curved surface of a hill as shown in the figure. At what elevation (y) does it strike the hill? A line in the vertical plane of the curved surface is given by the relation $y = 10^{-3} x^2$ ($g = 10 \text{ ms}^{-2}$)

17. A particle P is projected from a point on the surface of smooth inclined plane (see figure). Simultaneously another particle Q is released on the smooth inclined plane from the same position. P and Q collide on the inclined plane after t = 4 second. What is the speed of projection of P?

- 18. A particle is projected with a velocity u at an angle θ with the horizontal. Prove that the radius of curvature of its path, at the point where velocity makes an angle $\theta/2$ with the horizontal is given the relation $\frac{u^2 \cos^2 \theta}{g \cos^3 (\theta/2)}$
- 19. If R is the horizontal range and h is the maximum height reached by the projectile for an angle of projection θ , then prove that the maximum possible range is given by the relation $R_{\max} = \frac{R^2}{8h} + 2h$
- 20. If *T* is the total time of flight, *H* the maximum height and *R* is the horizontal range of a projectile. Prove that
 - (a) y coordinate of the projectile is given as a function of t and T by the relation $y = 4H\left(\frac{t}{T}\right)\left(1-\frac{t}{T}\right)$
 - (b) y coordinate of the projectile is given as a function of x and R by the relation $x = 4H\left(\frac{x}{R}\right)\left(1-\frac{x}{R}\right)$

Answers

- 1. d
- 2. c
- 3. a
- 4. d
- 5. a
- 6. b
- 7. d
- 8. a, b
- 9. d
- 10. a, b
- 11. a
- 12. c
- 13. 5.66 m
- 14. 10√2 ms⁻¹
- 15. 2.49 s
- 16. 1/3 km
- 17. 10 ms⁻¹
- 18. –
- 19. –
- 20. –